\relax \providecommand\hyper@newdestlabel[2]{} \providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} \HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined \global\let\oldcontentsline\contentsline \gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global\let\oldnewlabel\newlabel \gdef\newlabel#1#2{\newlabelxx{#1}#2} \gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\ifx\hyper@anchor\@undefined \let\contentsline\oldcontentsline \let\newlabel\oldnewlabel \fi} \fi} \global\let\hyper@last\relax \gdef\HyperFirstAtBeginDocument#1{#1} \providecommand\HyField@AuxAddToFields[1]{} \providecommand\HyField@AuxAddToCoFields[2]{} \providecommand{\mciteSetMaxWidth}[3]{\relax} \providecommand{\mciteSetMaxCount}[3]{\relax} \@writefile{toc}{\contentsline {section}{\numberline {1}Standard Model}{1}{section.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Elementary particles and forces}{1}{subsection.1.1}} \newlabel{intro_elem_part}{{1.1}{1}{Elementary particles and forces}{subsection.1.1}{}} \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Quarks in the Standard Model\relax }}{1}{table.caption.2}} \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}} \newlabel{Quark_SM_table}{{1}{1}{Quarks in the Standard Model\relax }{table.caption.2}{}} \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Leptons in the standard model\relax }}{2}{table.caption.3}} \newlabel{Lepton_SM_table}{{2}{2}{Leptons in the standard model\relax }{table.caption.3}{}} \newlabel{Lepton_table}{{2}{2}{Leptons in the standard model\relax }{table.caption.3}{}} \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Fundamental forces\relax }}{2}{table.caption.4}} \newlabel{fund_forces_table}{{3}{2}{Fundamental forces\relax }{table.caption.4}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Interaction rules}{3}{subsection.1.2}} \newlabel{beta-decay_feynman}{{1a}{4}{Feynman diagram of the $\beta $-decay\relax }{figure.caption.5}{}} \newlabel{sub@beta-decay_feynman}{{a}{4}{Feynman diagram of the $\beta $-decay\relax }{figure.caption.5}{}} \newlabel{muon-decay_feynman}{{1b}{4}{Feynman diagram of a $\mu $-decay\relax }{figure.caption.5}{}} \newlabel{sub@muon-decay_feynman}{{b}{4}{Feynman diagram of a $\mu $-decay\relax }{figure.caption.5}{}} \citation{Alves:2008zz} \citation{Alves:2008zz} \@writefile{toc}{\contentsline {section}{\numberline {2}\unhbox \voidb@x \hbox {LHCb}\xspace Experiment}{5}{section.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}\unhbox \voidb@x \hbox {LHC}\xspace }{5}{subsection.2.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Detector}{5}{subsection.2.2}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces A schematic view of the non-bending plane of the \unhbox \voidb@x \hbox {LHCb}\xspace detector. Particles are produced in the collision point on the left side inside the vertex locator and are bent by the magnet afterwards.\relax }}{5}{figure.caption.6}} \newlabel{fig:lhcb_schematic}{{2}{5}{A schematic view of the non-bending plane of the \lhcb detector. Particles are produced in the collision point on the left side inside the vertex locator and are bent by the magnet afterwards.\relax }{figure.caption.6}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.1}Vertex locator}{6}{subsubsection.2.2.1}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.2}Tracking system}{6}{subsubsection.2.2.2}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.3}RICH\xspace }{6}{subsubsection.2.2.3}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.4}Calorimeter}{6}{subsubsection.2.2.4}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.5}Muon system}{7}{subsubsection.2.2.5}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Trigger}{7}{subsection.2.3}} \newlabel{sec:trigger}{{2.3}{7}{Trigger}{subsection.2.3}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4}Software}{7}{subsection.2.4}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.4.1}Track reconstruction and fit}{7}{subsubsection.2.4.1}} \@writefile{toc}{\contentsline {section}{\numberline {A}Appendix}{10}{appendix.A}} \@writefile{toc}{\contentsline {subsection}{\numberline {A.1}Preselection}{10}{subsection.A.1}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Variables used in the preselection as described in Sect. \ref {sec:preselection}\relax }}{10}{figure.caption.8}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Variables used in the preselection as described in Sect. \ref {sec:preselection}\relax }}{11}{figure.caption.9}} \@writefile{toc}{\contentsline {subsection}{\numberline {A.2}Reweighting}{12}{subsection.A.2}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces A two dimensional distribution and its projections. Even tough the distributions can be easily discriminated by looking at their higher order -- second order here -- correlations, there projections do not reveal that.\relax }}{12}{figure.caption.10}} \newlabel{fig:appendix:reweighting:ndim_dist_projections}{{4}{12}{A two dimensional distribution and its projections. Even tough the distributions can be easily discriminated by looking at their higher order -- second order here -- correlations, there projections do not reveal that.\relax }{figure.caption.10}{}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces ROC AUC bias with weights visualized. The reweighter works quite well for this example and assigns a weight of 5 to the single blue point. Then the data is split in two different ways (Fold 1 and 2) into training and test data in order to compare two possible outcomes. The total outcome can be thought as an average of both cases.\relax }}{12}{figure.caption.11}} \newlabel{fig:appendix:reweighting:roc_auc_bias}{{5}{12}{ROC AUC bias with weights visualized. The reweighter works quite well for this example and assigns a weight of 5 to the single blue point. Then the data is split in two different ways (Fold 1 and 2) into training and test data in order to compare two possible outcomes. The total outcome can be thought as an average of both cases.\relax }{figure.caption.11}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {A.3}Selection}{13}{subsection.A.3}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces ROC curve of the XGB trained on the MC against the right side band ({\ensuremath {\ensuremath {B}\xspace }}\xspace mass vertex constrained $> 5600\ensuremath {\mathrm {\tmspace +\thinmuskip {.1667em}Me\kern -0.1em V}}\xspace $) of \ensuremath {{\ensuremath {{\ensuremath {\ensuremath {B}\xspace }}\xspace ^+}}\xspace \tmspace -\thinmuskip {.1667em}\ensuremath {\rightarrow }\xspace {\ensuremath {{\ensuremath {\ensuremath {K}\xspace }}\xspace ^+}}\xspace {\ensuremath {{\ensuremath {\ensuremath {\pi }\xspace }}\xspace ^+}}\xspace {\ensuremath {{\ensuremath {\ensuremath {\pi }\xspace }}\xspace ^-}}\xspace {\ensuremath {\ensuremath {e}\xspace ^+\ensuremath {e}\xspace ^-}}\xspace }\xspace .\relax }}{13}{figure.caption.12}} \bibstyle{LHCb} \bibdata{bib/ML} \bibcite{PhysRevD.2.1285}{1} \bibcite{Aaij:2014ora}{2} \bibcite{Aaij:2017vbb}{3} \bibcite{Aaij:2014kwa}{4} \bibcite{PhysRevD.78.074007}{5} \bibcite{Alves:2008zz}{6} \bibcite{LHCb-PROC-2010-056}{7} \bibcite{Pivk:2004ty}{8} \bibcite{Rogozhnikov:boostedreweighting}{9} \bibcite{ML:ROC_AUC:Bradley:1997:UAU:1746432.1746434}{10} \bibcite{Breiman}{11} \bibcite{AdaBoost}{12} \bibcite{ML:XGBoost}{13} \bibcite{Punzi:2003bu}{14} \bibcite{Aaij:2016avz}{15} \bibcite{LHCb-PAPER-2015-019}{16} \bibcite{LHCb-PAPER-2012-037}{17} \bibcite{Skwarnicki:1986xj}{18} \@writefile{toc}{\contentsline {section}{References}{14}{figure.caption.12}} \mciteSetMaxCount{main}{bibitem}{18} \mciteSetMaxCount{main}{subitem}{1} \mciteSetMaxWidth{main}{bibitem}{770040} \mciteSetMaxWidth{main}{subitem}{0}